Higgs pair production at future colliders

Michihisa Takeuchi (Kavli IPMU, Univ. of Tokyo)

at IAS Hongkong, on 10th Jan. 2019

LHC & Future Colliders

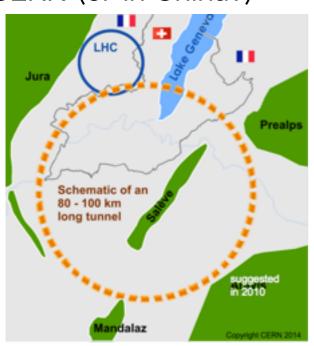
LHC: 14 TeV 3 ab-1 (or 4ab-1)

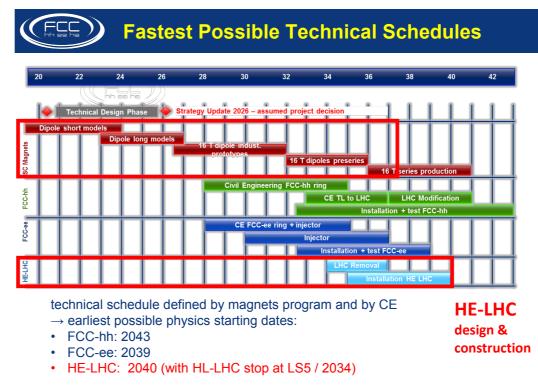
8T dipole ~2039

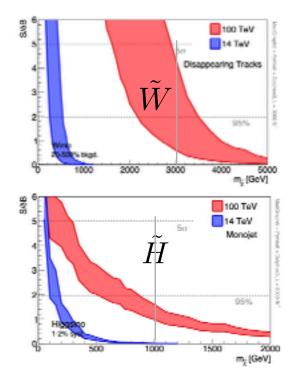
ILC: 250GeV 2 ab-1, (500GeV, 1TeV, 2TeV, ···)

HE-LHC: 27 TeV 15 ab⁻¹

16T dipole 2040~

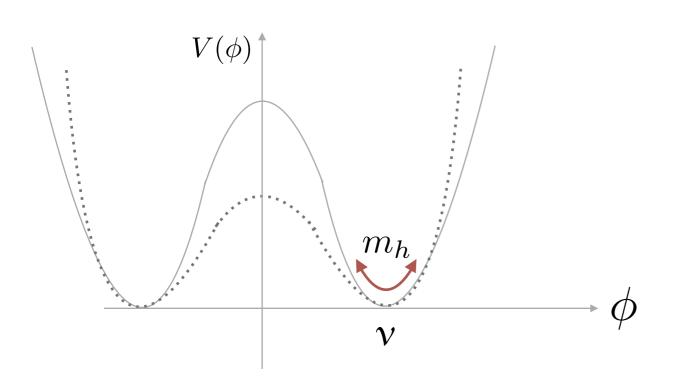

100TeV collider: 100 TeV 30 ab-1


x3-4 long tunnel


M. Benedikt

16T dipole 2043~

CERN (or in China?)



What do we search for with these machines?

Reaches/Precision obviously improves. Can we answer qualitative yes/no question?

ex) Thermal WIMP DM can be fully searched?

Higgs potential shape

We know the local structure around VEV, (v and higgs mass)

$$V(h) = \frac{\lambda}{4}h^4 + \lambda vh^3 + \dots = \frac{\lambda_4}{4!}h^4 + \frac{\lambda_3}{3!}h^3 +$$

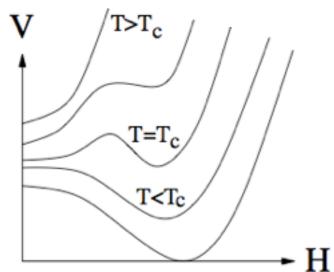
$$\lambda_{SM} \approx 1/8.$$

$$\lambda_3 = 6\lambda v = \frac{3m_h^2}{v}$$

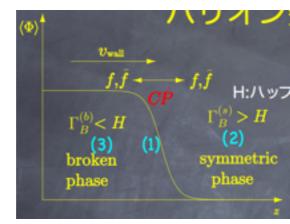
global Higgs potential shape might be different from simple $\lambda\phi^4+\mu\phi^2$ for example, ϕ^6 term

HE-LHC (27TeV, 15 ab⁻¹):

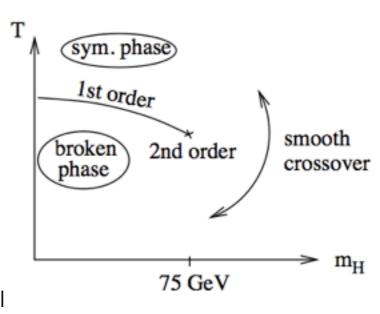
the machine for the Higgs self coupling measurement at the sensitivity able to answer the interesting question


arXiv:1802.04319 [D. Goncalves, T. Han, F. Kling, T. Plehn, MT]

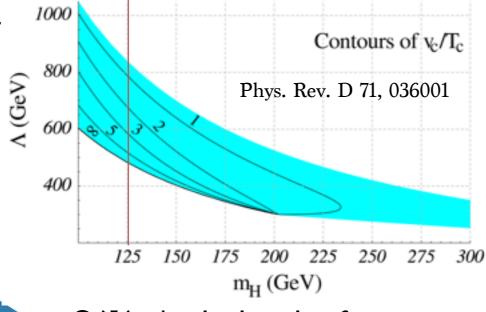
How accurate λ measurement would be interesting?


EWSB phase transition at early universe

finite temp. effective higgs potential


$$V_{\text{tot}} \cong m_H^2(T)H^2 - ETH^3 + \lambda H^4$$

$$V(h) = \frac{\lambda}{4}h^4 + \lambda vh^3 + \dots = \frac{\lambda_4}{4!}h^4 + \frac{\lambda_3}{3!}h^3 +$$
in the SM $\lambda_{\text{SM}} \approx 1/8$.
$$\lambda_4 = 6\lambda \qquad \lambda_3 = 6\lambda v = \frac{3m_h^2}{v}$$


For EW baryogenesis successful strong 1st order PT ($v_c/Tc > 1$) required (necessary condition)

125 GeV Higgs is too heavy for EWBG successful

Considering new physics by dim.6 op.

$$V(\Phi) = \lambda \left(\Phi^\dagger \Phi - \frac{v^2}{2} \right)^2 + \frac{1}{\Lambda^2} \left(\Phi^\dagger \Phi - \frac{v^2}{2} \right)^3 \qquad \underbrace{\underbrace{5}}_{\textstyle \leftarrow} \quad \begin{array}{c} 800 \\ 600 \end{array}$$

Contours of $\mu/\mu_{\rm SM}-1$ 0.8

0.4

0.25

0.25

0.25

0.100

150

200

250

300 $m_{\rm h}$ (GeV)

strong 1st order PT

O(1) deviation in λ_3 required [C. Grojean, G. Servant, J. Wells]

$$\lambda_3 = \frac{3m_h^2}{v} + \frac{6v^3}{\Lambda^2} \gtrsim 1.7\lambda_{3,SM}$$

To exclude this EWBG scenario, 70% level measurements required for λ 3

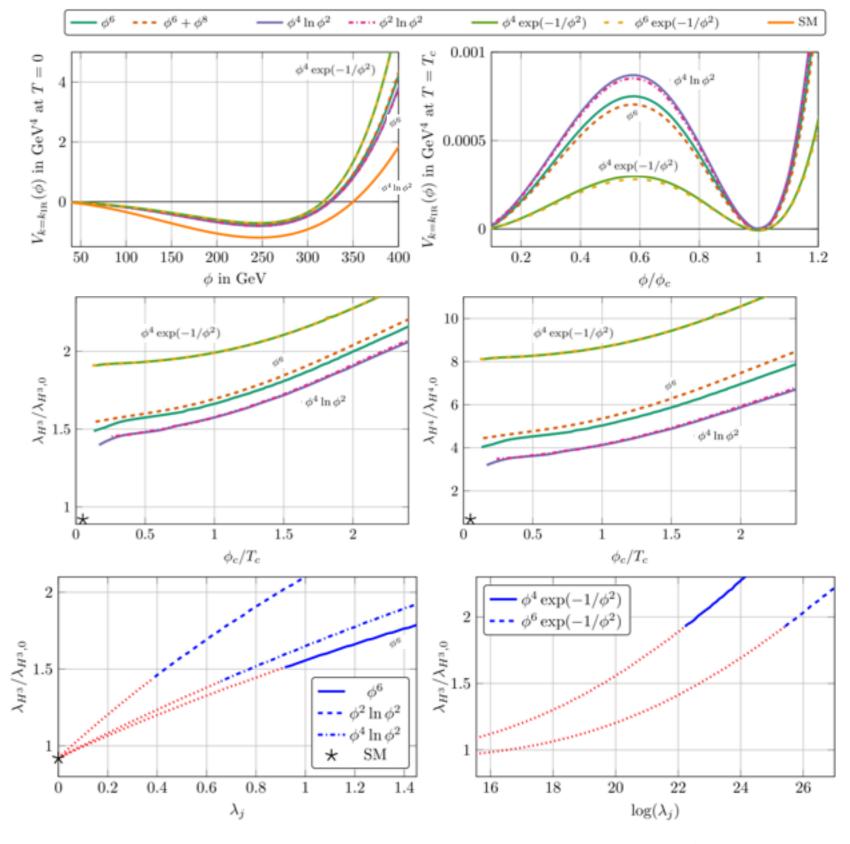
the statement is rather general

[Phys.Rev. D97 (2018) no.7, 075008

M. Reichert, A. Eichhorn, H. Gies, J. M. Pawlowski, T. Plehn, M. M. Scherer

$$V_{k=\Lambda} = \frac{\mu^2}{2}\phi^2 + \frac{\lambda_4}{4}\phi^4 + \Delta V,$$

$$\Delta V_{6} = \lambda_{6} \frac{\phi^{6}}{\Lambda^{2}}, \qquad \Delta V_{8} = \lambda_{6} \frac{\phi^{6}}{\Lambda^{2}} + \lambda_{8} \frac{\phi^{8}}{\Lambda^{4}},$$


$$\Delta V_{\ln,2} = -\lambda_{\ln,2} \frac{\phi^{2} \Lambda^{2}}{100} \ln \frac{\phi^{2}}{2\Lambda^{2}},$$

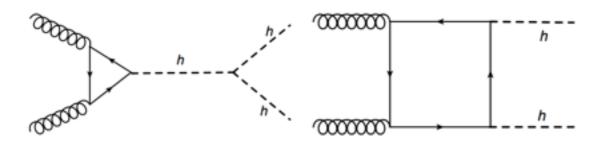
$$\Delta V_{\ln,4} = \lambda_{\ln,4} \frac{\phi^{4}}{10} \ln \frac{\phi^{2}}{2\Lambda^{2}},$$

$$\Delta V_{\exp,4} = \lambda_{\exp,4} \phi^{4} \exp \left(-\frac{2\Lambda^{2}}{\phi^{2}}\right),$$

$$\Delta V_{\exp,6} = \lambda_{\exp,6} \frac{\phi^{6}}{\Lambda^{2}} \exp \left(-\frac{2\Lambda^{2}}{\phi^{2}}\right).$$

Considering 3 types of potentials

strong 1st order PT


O(1) deviation in
$$\lambda$$
 3 required $\lambda_3 = \frac{3m_h^2}{v} + \frac{6v^3}{\Lambda^2} \gtrsim 1.7\lambda_{3,\mathrm{SM}}$

To exclude this EWBG scenario, 70% level measurements required for λ 3

λ sensitivity at HL-LHC

the lowest process involving the self coupling at LHC

Higgs pair production $pp \to hh$

40 fb = 120k events in full lifetime of LHC

hh decays:

 $b\bar{b}\gamma\gamma$ $b\bar{b}\tau\tau$ $b\bar{b}WW$

VW

bbbb

4W.

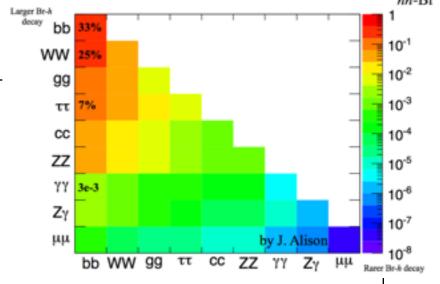
Best sensitivity channel

bb: large BR

 $\gamma \gamma$: clean channel

0.1 fb including BR=0.26%

(300 events in full lifetime of LHC)

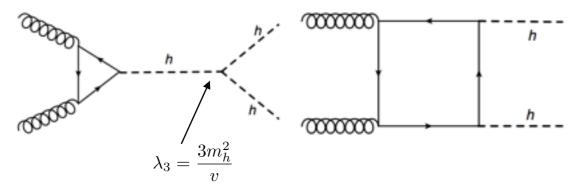

using only total rate [ATL-PHYS-PUB-2017-001,CMS-PAS-FTR-16-002]

$$-0.8 < \kappa_{\lambda} < 7.7$$
 at 95% CL

using full kinematics [Phys. Rev. D 95, 035026, F. Kling, T. Plehn, P. Schichtel]

$$-0.2 < \kappa_{\lambda} < 2.6$$
, at 95% CL

$$0.4 < \kappa_{\lambda} < 1.75 \text{ at } 68\% \text{ CL}$$


$$\kappa_{\lambda} \approx 1_{-60\%}^{+75\%}$$

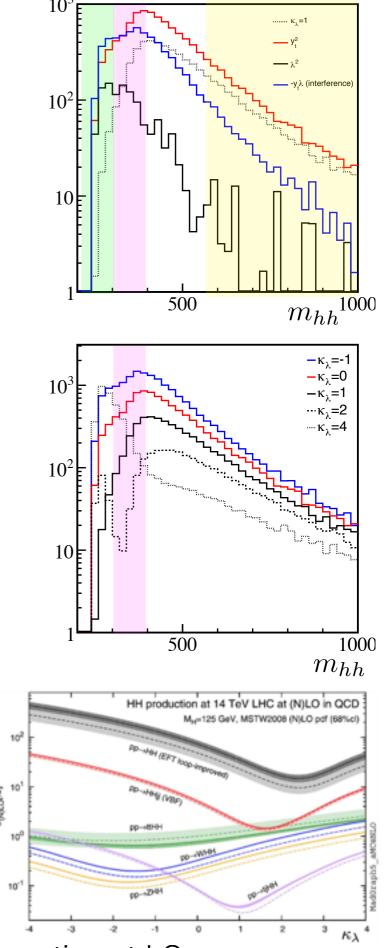
not satisfactory at all.

after selection, based on O(10) events ~3% acceptance

three phase space

strong destructive interference

$$\mathcal{M} = \kappa_{\lambda} y_t \mathcal{M}_{\triangle} + y_t^2 \mathcal{M}_{\square}$$


$$m_{hh}^{ ext{(th)}} pprox 2m_h \ rac{lpha_s}{12\pi v} \left(rac{\kappa_\lambda \lambda_{ ext{SM}}}{s-m_h^2} - rac{1}{v}
ight)
ightarrow rac{lpha_s}{12\pi v^2} \left(\kappa_\lambda - 1
ight) \stackrel{ ext{SM}}{=} 0 \; . \qquad \qquad rac{lpha_S}{12\pi} G^{\mu\nu} G_{\mu\nu} \log(1+rac{h}{v}) \ \log(1+rac{h}{v}) = rac{h}{v} - rac{h^2}{2v^2} + \cdots$$

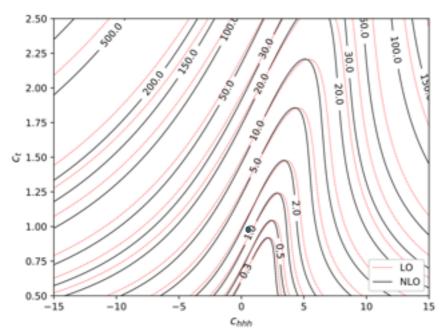
$$m_{hh}^{(\text{abs})} \approx 2m_t$$
.

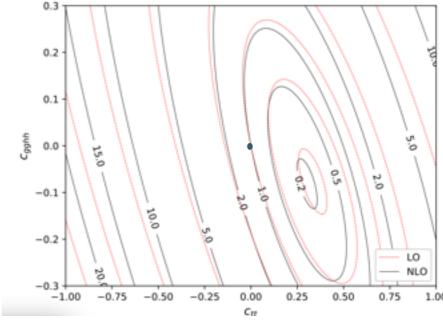
absorptive imaginary parts lead to a significant dip

$$m_{hh}^{\text{(high)}} \gg m_h, m_t$$
.

box contributions decay slower

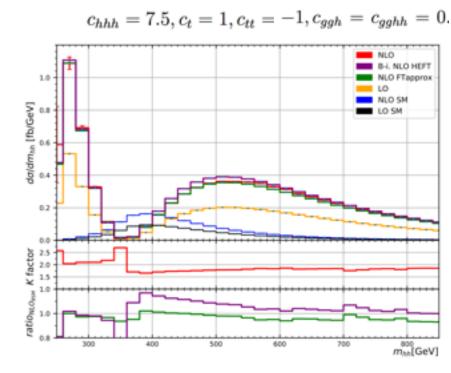

Since they are scalar particles, only mun distribution has the information at LO.


Theory prediction at NLO

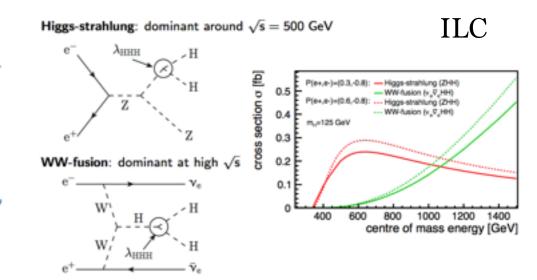

include EFT coupligns and full mt dependence

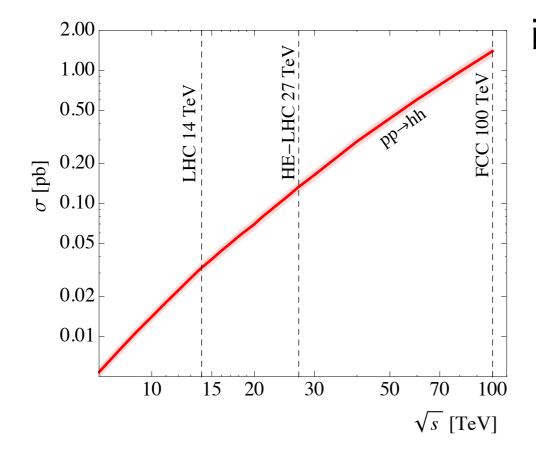
[arXiv: 1806.05162]

$$\mathcal{L} \supset -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G_{\mu\nu}^a G^{a,\mu\nu} .$$



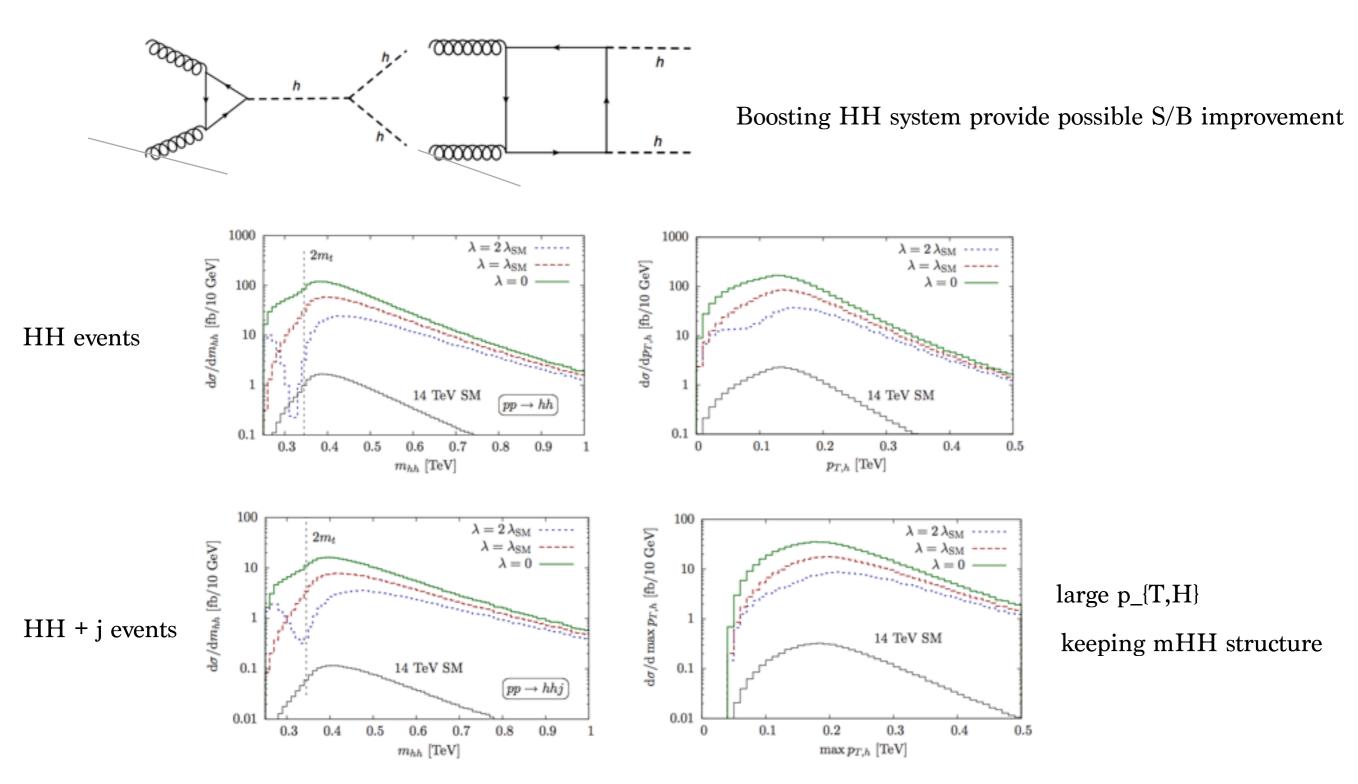
$$\sigma/\sigma_{SM} = A_1 c_t^4 + A_2 c_{tt}^2 + A_3 c_t^2 c_{hhh}^2 + A_4 c_{ggh}^2 c_{hhh}^2 + A_5 c_{gghh}^2 + A_6 c_{tt} c_t^2 + A_7 c_t^3 c_{hhh}
+ A_8 c_{tt} c_t c_{hhh} + A_9 c_{tt} c_{ggh} c_{hhh} + A_{10} c_{tt} c_{gghh} + A_{11} c_t^2 c_{ggh} c_{hhh} + A_{12} c_t^2 c_{gghh}
+ A_{13} c_t c_{hhh}^2 c_{ggh} + A_{14} c_t c_{hhh} c_{gghh} + A_{15} c_{ggh} c_{hhh} c_{gghh}.$$
(2.7)


$$\Delta \sigma / \sigma_{SM} = A_{16} c_t^3 c_{ggh} + A_{17} c_t c_{tt} c_{ggh} + A_{18} c_t c_{ggh}^2 c_{hhh} + A_{19} c_t c_{ggh} c_{gghh} + A_{20} c_t^2 c_{ggh}^2 + A_{21} c_{tt} c_{ggh}^2 + A_{22} c_{ggh}^3 c_{hhh} + A_{23} c_{ggh}^2 c_{gghh}.$$


K-factor can be large up to 3, depending on the phase space differential distribution for 23terms available at arxiv

HE-LHC and 100 TeV colliders

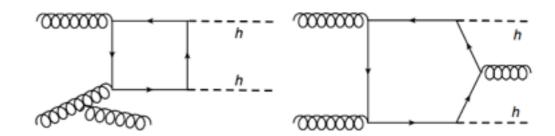
- 1. the 27 TeV high-energy LHC (HE-LHC) with an integrated luminosity of 15 ab⁻¹,
- 2. a 100 TeV hadron collider with 30 ab⁻¹, under consideration at CERN (FCC-hh) [18] and in China (SppC) [19].



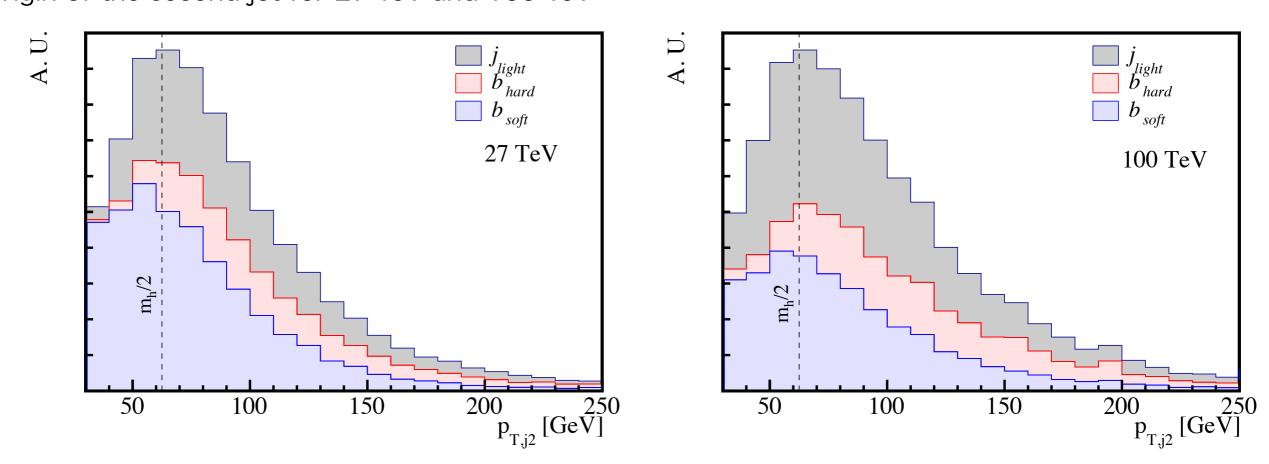
in cross section compared with 14TeV factor 4 (27TeV) factor 40 (100TeV)

boosted HH + j

[arXiv:1412.7154, A. J. Barr, M. J. Dolan, C. Englert, D. F. de Lima, M. Spannowsky]



requiring 1 additional jet reduce the number of remaining events


properly simulate the 3rd jet important

All Signal/BG samples simulated with 1 additional jet in MLM matching

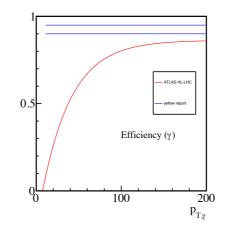
$$pp o hh o b ar b \; \gamma \gamma + X.$$

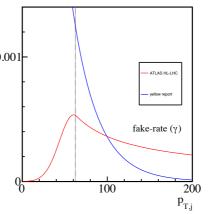
two H decay products not always found in the hardest two jets (b from H has intrinsic pT ~ 60GeV) origin of the second jet for 27 TeV and 100 TeV

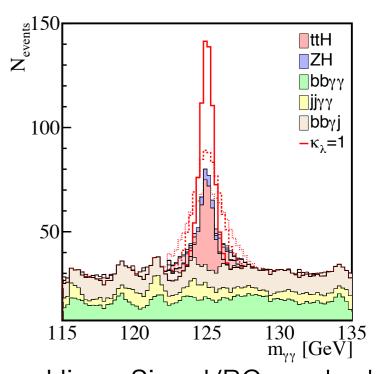
Requiring two b-tags in three hardest jets important! (50% acceptance higher)

Event selection

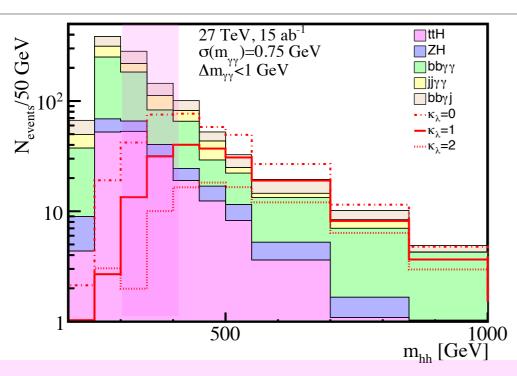
two photons, two b-jets

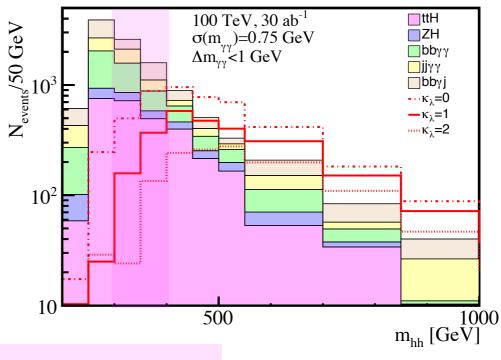

$$\epsilon_{\gamma \to \gamma} = 0.863 - 1.07 \cdot e^{-p_{T,\gamma}/34.8 \text{ GeV}}$$


$$\epsilon_{j \to \gamma} = \begin{cases} 5.3 \cdot 10^{-4} \exp\left(-6.5 \left(\frac{p_{T,j}}{60.4 \text{ GeV}} - 1\right)^2\right), & \text{pT} < 65 \text{GeV} \\ 0.88 \cdot 10^{-4} \left[\exp\left(-\frac{p_{T,j}}{943 \text{ GeV}}\right) + \frac{248 \text{ GeV}}{p_{T,j}}\right], & \text{pT} > 65 \text{GeV} \end{cases}$$


reducing fake photon important (esp. low pT)

both pairs provide higgs mass


We have to require $m_{hh} > 400 \text{GeV}$



Higgs Signal/BG: peaked continuum BG: flat (controllable by side-bands)

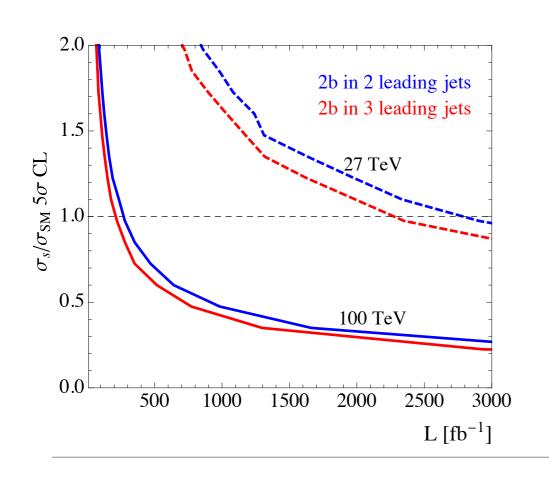
characteristic structure should appear in low m_{hh} region

but very difficult to access it due to too huge BG (cf. using jet recoil D. Ferreira de Lima, M. Spannowsky)

JHEP 1502 (2015) 016 [A. Barr, M. Dolan, C. Englert,

Results

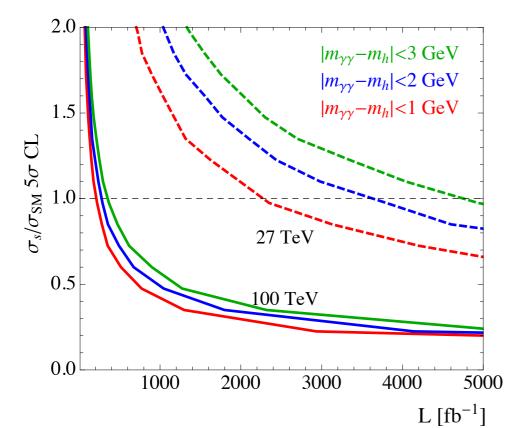
Baseline: $p_{T,j} > 30$ GeV, $|\eta_j| < 2.5$, $\epsilon_b = 70\%$ $\epsilon_c = 15\%$ $\epsilon_j = 0.3\%$ $p_{T,\gamma} > 30$ GeV, $|\eta_\gamma| < 2.5$, $\Delta R_{\gamma\gamma,\gamma j,jj} > 0.4$.


Collider	Process		κ_{λ}		$t ar{t} h$	Zh	$b \bar b \gamma \gamma$	$jj\gamma\gamma$	$bar{b}\gamma j$	BG tot.	$S/\sqrt{S+B}_{\mathrm{1ab}^{-1}}$	S/B
		0	1	2								
HE-LHC (15 ab ⁻¹)	σ [fb]	0.69	0.36	0.18	6.43	0.77	1.24 pb	36.6 pb	$506~\mathrm{pb}$			
	Baseline	2.87K	1.57K	838	21.8K	1.44K	1.19M	36M	1.13M	38.3M	0.07	$4\cdot 10^{-5}$
	$n_j \leq 3, n_b = 2$	648	356	190	954	389	200K	67.4K	105K	374K	0.15	$1 \cdot 10^{-3}$
	$\Delta m_{bb} \le 25 \text{ GeV}$	470	260	140	195	66	43.7K	10.6K	25.8K	80.4K	0.24	0.003
	$\Delta m_{\gamma\gamma} \le 3 \text{ GeV}$	459	253	136	197	63	1.42K	505	758	2.94K	1.2	0.09
	$\Delta m_{\gamma\gamma} \le 2 \text{ GeV}$	459	253	136	197	63	957	342	504	2.06K	1.4	0.12
	$\Delta m_{\gamma\gamma} \le 1 \text{ GeV}$	459	253	136	197	63	485	182	245	1.17K	1.7	0.22
	$\Delta m_{\gamma\gamma} \leq 3 \text{ GeV}, m_{hh} > 400$	320	206	120	56	21	324	97	178	676	1.8	0.30
	$\Delta m_{\gamma\gamma} \leq 2 \text{ GeV}, m_{hh} > 400$	320	206	120	56	21	220	67	122	485	2.0	0.42
	$\Delta m_{\gamma\gamma} \le 1 \text{ GeV}, m_{hh} > 400$	320	206	120	56	21	115	41	61	293	2.4	0.70
	σ [fb]	6.95	3.72	1.97	84.8	3.76	6.21 pb	126 pb	3.03 nb			
	Baseline	51.8K	29.8K	16.9K	535K	13.1K	13.6M	330M	18.6M	363M	0.29	$8 \cdot 10^{-5}$
	$n_j \leq 3, n_b = 2$	9.22K	5.28K	3.02K	18K :	2.84K	1.79M	773K	1.42M	4.00M	0.48	0.001
	$\Delta m_{bb} \leq 25 \mathrm{GeV}$	6.45K	3.80K	2.18K	3.3K	669	361K	218K	373K	956K	0.71	0.004
100 TeV	$\Delta m_{\gamma\gamma} \le 3 \text{ GeV}$	6.30K	3.70K	2.13K	3.12K	653	8.34K	6.06K	8.99K	27.2K	3.9	0.14
(30 ab^{-1})	$\Delta m_{\gamma\gamma} \leq 2 \text{ GeV}$	6.30K	3.70K	2.13K	3.12K	653	5.66K	4.13K	5.99K	19.5K	4.4	0.19
	$\Delta m_{\gamma\gamma} \le 1 \; { m GeV}$	6.30K	3.70K	2.13K	3.12K	653	2.82K	1.91K	2.99K	11.4K	5.5	0.32
	$\Delta m_{\gamma\gamma} \leq 3 \text{ GeV}, m_{hh} > 400$	4.66K	3.16K	1.93K	1.09K	203	1.56K	1.10K	1.90K	5.86K	6.1	0.54
	$\Delta m_{\gamma\gamma} \leq 2 \text{ GeV}, m_{hh} > 400$					203	1.04K	747	1.14K	4.23K	6.7	0.73
	$\Delta m_{\gamma\gamma} \leq 1 \text{ GeV}, m_{hh} > 400$	4.66K	3.16K	1.93K	1.09K	203	523	359	617	2.79K	7.5	1.13

including 3rd jets in the analysis important

narrowing di-photon mass range effective to reach S/B ~ 1. (the resolution 0.75, 1.5, 2.25 GeV assumed corresponding to the 1,2,3 GeV range) [Note: 1.5GeV is already achieved at the LHC.]

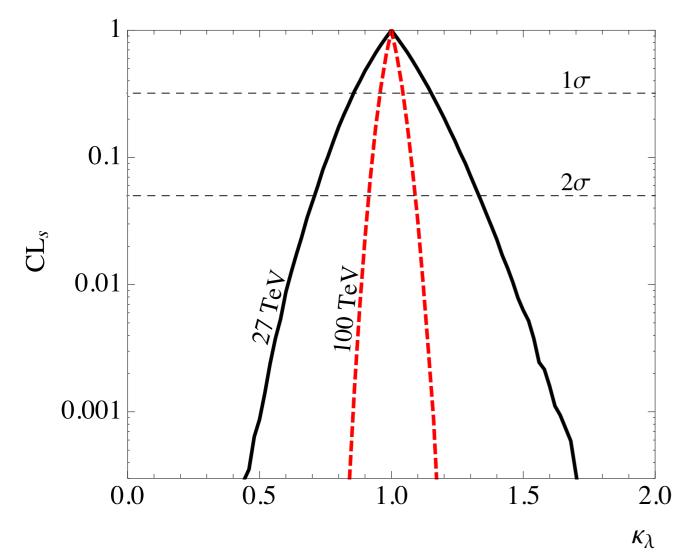
4th jet veto mainly for reducing ttH BG.


Two important comments

sub-samples (bb, bbj) and (jbb, bjb)

including b-tag in 3rd jet clearly improves the sensitivity

The 5σ measurement for HE-LHC is $2.8~{\rm ab^{-1}}$ to below $2.3~{\rm ab^{-1}}$



for Higgs self coupling sensitivity photon invariant mass resolution most important

(the resolution 0.75, 1.5, 2.25 GeV assumed corresponding to the 1,2,3 GeV range)
[1.5 GeV is already achieved at LHC]

important for detector design

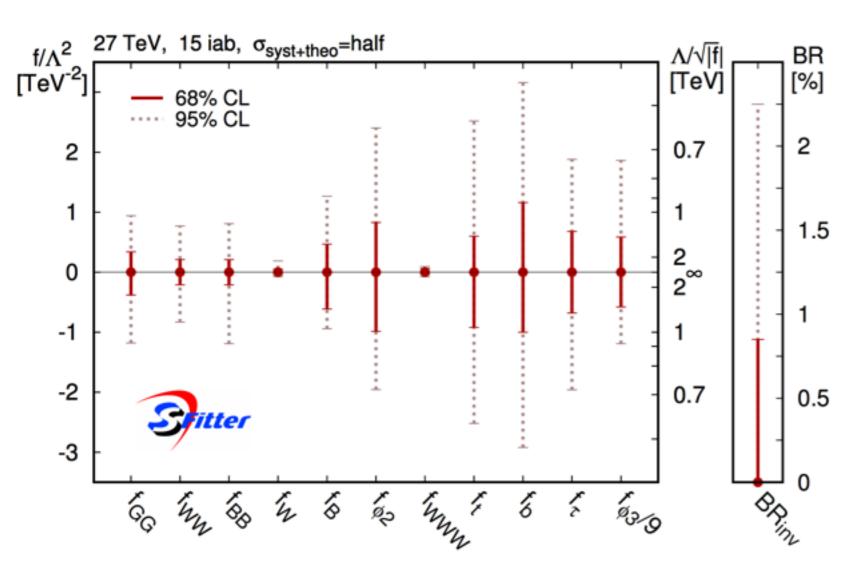
sensitivity at HE-LHC

Phys. Rev. D 97, 113004 [arXiv:1802.04319] [D. Goncalves, T. Han, F. Kling, T. Plehn, MT]

The other channels contribute sub-dominantly.

HE-LHC, 27 TeV,
$$15 \text{ ab}^{-1}$$

$$\kappa_{\lambda} \approx 1 \pm 15\% \ (1\sigma)$$


$$\kappa_{\lambda} \approx 1 \pm 30\% \ (2\sigma)$$

conclusive sensitivity to determine whether self-coupling deviation is O(1) or not

for 100 TeV,
$$30 \text{ ab}^{-1}$$

$$\kappa_{\lambda} \approx 1 \pm 5\%(1\sigma), 10\%(2\sigma)$$

global analysis for Higgs couplings at HE-LHC

[arXiv:1811.08401]

[A. Biekotter, D. Goncalves, T. Plehn, MT, D Zerwas]

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{\alpha_s}{8\pi} \frac{f_{GG}}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} \\ &+ \frac{f_{\phi 2}}{\Lambda^2} \mathcal{O}_{\phi 2} + \frac{f_{\phi 3}}{\Lambda^2} \mathcal{O}_{\phi 3} + \frac{f_{\tau} m_{\tau}}{v \Lambda^2} \mathcal{O}_{e\phi, 33} + \frac{f_b m_b}{v \Lambda^2} \mathcal{O}_{d\phi, 33} + \frac{f_t m_t}{v \Lambda^2} \mathcal{O}_{u\phi, 33} \\ &+ \text{invisible decays} \;, \end{split}$$

channel	observable	# bins	${\rm range}~[{\rm GeV}]$
$WW \rightarrow (\ell\nu)(\ell\nu)$	$m_{\ell\ell'}$	10	0 - 4500
$WW \rightarrow (\ell\nu)(\ell\nu)$	$p_T^{\ell_1}$	8	0 - 1750
$WZ \rightarrow (\ell\nu)(\ell\ell)$	m_T^{WZ}	11	0 - 5000
$WZ \rightarrow (\ell\nu)(\ell\ell)$	$p_T^{\ell\ell} (p_T^Z)$	9	0 - 2400
WBF, $H \rightarrow \gamma \gamma$	$p_T^{\ell_1}$	9	0 - 2400
$VH \rightarrow (0\ell)(b\bar{b})$	p_T^V	7	150 - 750
$VH \rightarrow (1\ell)(b\bar{b})$	$p_T^{\tilde{V}}$	7	150 - 750
$VH \rightarrow (2\ell)(b\bar{b})$	$rac{p_T^V}{p_T^V}$	7	150 - 750
$HH \rightarrow (b\bar{b})(\gamma\gamma), 2j$	m_{HH}	9	200 - 1000
$HH \rightarrow (b\bar{b})(\gamma\gamma), 3j$	m_{HH}	9	200 - 1000

$$\frac{\Lambda}{\sqrt{|f_{\phi 3}|}} > 430 \text{ GeV}$$
 at 68%CL

15% in the self-coupling corresponds to

$$\left| \frac{\Lambda}{\sqrt{f_{\phi 3}}} \right| \sim 1 \text{ TeV}$$

Limits are diluted from one param analysis due to the cancellation between $~{\cal O}_{\phi 2}~{
m and}~{\cal O}_{\phi 3}$

$$\mathcal{O}_{\phi 3} = -(\phi^\dagger \phi)^3/3$$
 $\qquad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^\mu \left(\phi^\dagger \phi\right) \partial_\mu \left(\phi^\dagger \phi\right)$

Summary

HE-LHC (27TeV) machine for Higgs self-coupling measurement to answer yes/no for the EW Baryogenesis

successful EWBG require the 70% enhancement on the Higgs self-coupling.

We have checked the sensitivity at HE-LHC (27TeV, 15ab⁻¹) ~ 15% [cf. 70% at HL-LHC] (it would be able to exclude the EWBG scenario at ~ 5 σ)

low m_{hh} region exhibit a characteristic structure but not possible to access due to the huge background.

important: including 3rd jets properly, improving di-photon invariant mass resolution

We would be able to reach S/B \sim 1, and O(200) events allow the shape analysis

100TeV collider would improve the sensitivity by a factor 3, which is ~ 5%.